Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Revision of the criticality safety handbook in light of the reality of the nuclear fuel cycle in Japan; With a view to transportation and storage of fuel debris

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai

Proceedings of 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM22) (Internet), 5 Pages, 2023/06

Since the 1990s, the importance of the handbook has changed significantly, as the computational power has improved and continuous energy Monte Carlo codes have become widely used, which enables highly accurate criticality calculations, when necessary, irrespective of the complexity of the system. Because the value of performing a large number of calculations in advance and summarizing the data has decreased, since the second edition was published publicly in 1999, there has been no revision of criticality safety handbooks in Japan for nearly a quarter of a century. In Japan, where the Fukushima Daiichi Nuclear Power Plant accident occurred in 2011, it became necessary to deal with criticality safety issues in the transport and storage of the fuel debris which contains complex constituent elements, and the summary the criticality safety management for such material is an urgent issue. In the area of burnup credit, the transport and storage of fuel assemblies with low achieved burnups due to the consequences of accidents might be the problem. In addition, nuclear data, which is the input for the continuous energy Monte Carlo code, has been improved several times, now JENDL-5 is available from the end of 2021, and its incorporation becomes a need in the field. This report provides an overview of the latest criticality safety research in Japan and the planned revision of the Criticality Safety Handbook, which could be applied to the transport and storage sectors.

JAEA Reports

Handbook of advanced nuclear hydrogen safety (1st Edition)

Hino, Ryutaro; Takegami, Hiroaki; Yamazaki, Yukie; Ogawa, Toru

JAEA-Review 2016-038, 294 Pages, 2017/03

JAEA-Review-2016-038.pdf:11.08MB

In the aftermath of the Fukushima nuclear accident, safety measures against hydrogen in severe accident have been recognized as a serious technical problem in Japan. Therefore, efforts have begun to form a common knowledge base between nuclear engineers and experts on combustion and explosion, and to secure and improve future nuclear energy safety. As one of such activities, we have prepared the "Handbook of Advanced Nuclear Hydrogen Safety" under the Advanced Nuclear Hydrogen Safety Research Program funded by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry. The concepts of the handbook are as follows: to show advanced nuclear hydrogen safety technologies that nuclear engineers should understand, to show hydrogen safety points to make combustion-explosion experts cooperate with nuclear engineers, to expand information on water radiolysis considering the situation from just after the Fukushima accidents and to the waste management necessary for decommissioning after the accident, etc.

JAEA Reports

Integral benchmark test of JENDL-4.0 for U-233 systems with ICSBEP Handbook

Kuwagaki, Kazuki*; Nagaya, Yasunobu

JAEA-Data/Code 2017-007, 27 Pages, 2017/03

JAEA-Data-Code-2017-007.pdf:4.77MB
JAEA-Data-Code-2017-007-appendix(CD-ROM).zip:0.37MB

The integral benchmark test of JENDL-4.0 for U-233 systems using the continuous-energy Monte Carlo code MVP was conducted. The previous benchmark test was performed only for U-233 thermal solution and fast metallic systems in the ICSBEP handbook. In this study, MVP input files were prepared for uninvestigated benchmark problems in the handbook including compound thermal systems (mainly lattice systems) and integral benchmark test was performed. The prediction accuracy of JENDL-4.0 was evaluated for effective multiplication factors ($$k_mathrm{eff}$$'s) of the U-233 systems. As a result, a trend of underestimation was observed for all the categories of U-233 systems. In the benchmark test of ENDF/B-VII.1 for U-233 systems with the ICSBEP handbook, it is reported that a decreasing trend of calculated $$k_mathrm{eff}$$ values in association with a parameter ATFF (Above-Thermal Fission Fraction) is observed. The ATFF values were also calculated in this benchmark test of JENDL-4.0 and the same trend as ENDF/B-VII.1 was observed.

JAEA Reports

Criticality database user's manual

*; Komuro, Yuichi; Arakawa, Takuya*

JAERI-Data/Code 97-004, 46 Pages, 1997/03

JAERI-Data-Code-97-004.pdf:1.11MB

no abstracts in English

Journal Articles

Consensus standards utilized and implemented for nuclear criticality safety in Japan

Nomura, Yasushi; Okuno, Hiroshi; Naito, Yoshitaka

Transactions of the American Nuclear Society, 75, 207 Pages, 1996/00

no abstracts in English

JAEA Reports

JMTR irradiation handbook

Department of JMTR

JAERI-M 94-023, 247 Pages, 1994/03

JAERI-M-94-023.pdf:8.56MB

no abstracts in English

JAEA Reports

None

; ; Momose, Takumaro; Nojiri, Ichiro; ; ; Sudo, Toshiyuki

PNC TN8410 92-031, 79 Pages, 1992/02

PNC-TN8410-92-031.pdf:2.49MB

None

8 (Records 1-8 displayed on this page)
  • 1